

18 June 2018

## Kalkaroo Maiden Ore Reserve Confirms Large Copper Project

## HIGHLIGHTS

- Maiden Ore Reserve of 474,000 tonnes of contained copper and 1.41 million ounces of gold independently determined by RPMGlobal.
- Total 100.1 million tonne Ore Reserve, consisting of:
  - 90.2 million tonnes Proved, and
  - 9.9 million tonnes Probable,

in accordance with the JORC 2012 code for reporting of ore reserves.

- Largest undeveloped open pit copper deposit in Australia on a copper equivalent ore reserve basis, with a 0.74% copper-equivalent grade.
- High conversion of 75% of JORC Measured and Indicated Resources to Ore Reserves.
- Proposed large scale open pit mine located in a logistically favourable region of northeastern South Australia, near Broken Hill.
- Further PFS work is in progress to address several potentially significant value adding options, including the addition of cobalt and the optimisation of metal recoveries.
- Mine permitting, including native title negotiations, is well advanced.
- Havilah owns Kalkaroo Station on which the project is situated.
- Places Havilah in a very favourable position in the current strong uptrending copper cycle.



Havilah Resources Limited (Havilah) is pleased to release a maiden Ore Reserve for Kalkaroo of 474,000 tonnes of contained copper and 1.41 million ounces of gold for the Kalkaroo copper-cobalt-gold project in the northeast of South Australia (Figure 1).

This Ore Reserve was independently estimated by mining consultants, RPMGlobal Asia Ltd (**RPMGlobal**), as part of the Kalkaroo preliminary pre-feasibility (**PFS**) study report prepared for Wanbao Mining Limited.

| Category | Tonnage<br>(Mt) | Copper<br>Grade<br>(%) | Gold<br>Grade<br>(g/t) | Copper<br>Content<br>(Kt) | Gold<br>Content<br>(Koz) |
|----------|-----------------|------------------------|------------------------|---------------------------|--------------------------|
| Proved   | 90.2            | 0.48                   | 0.44                   | 430                       | 1,282                    |
| Probable | 9.9             | 0.45                   | 0.39                   | 44                        | 125                      |
| Total    | 100.1           | 0.47                   | 0.44                   | 474                       | 1,407                    |

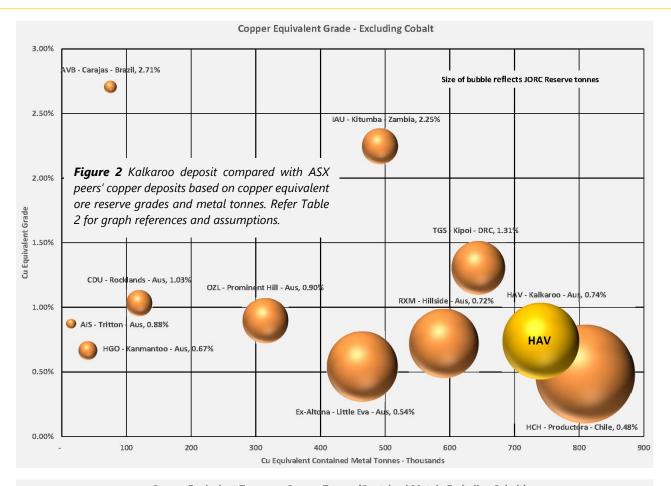
#### Table 1 Ore Reserves as at June 2018

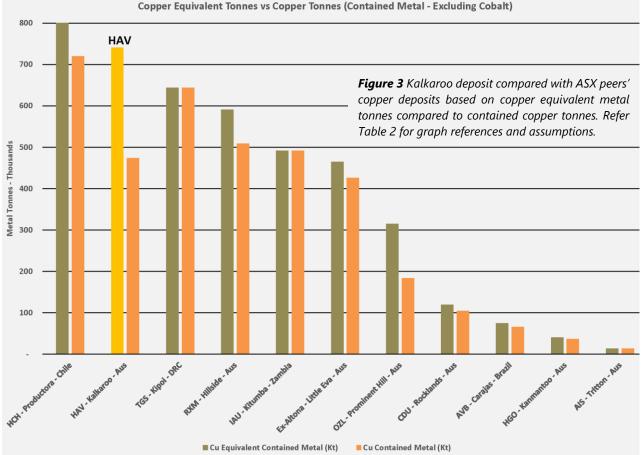
Note: Estimate has been rounded to reflect accuracy. All the estimates are on a dry tonne basis.

#### 1. Significance of the Kalkaroo Ore Reserve for Havilah

Release of the Kalkaroo ore reserve is an important milestone for Havilah, as it establishes the Kalkaroo project as the **largest undeveloped open pit copper-gold deposit in Australia on a copper-equivalent Ore Reserve basis (Figure 2)**. Kalkaroo is larger than any other Australian based undeveloped open pit copper deposit and is second in size only to the Productora deposit in Chile amongst its ASX listed copper peers.

Kalkaroo's copper-equivalent grade of 0.74%, which is enhanced by a material gold credit, exceeds that of its comparable size Australian based peers (**Figure 3**). The gold serves as a natural hedge, with copper and gold prices often being in opposite metal price cycles, which potentially lowers the inherent risk of the project.


Kalkaroo is unique amongst its Australian copper peers in containing a 23,200 tonne cobalt resource (in an Inferred Resource of 193 million tonnes at 0.012% - <u>refer ASX announcement of 7 March 2018</u>). **This also makes Kalkaroo the largest sulphide cobalt deposit underpinned by copper in Australia** on a mineral resource basis, as highlighted in Havilah's recent <u>Copper Strategy - Enhanced by Cobalt</u> presentation.

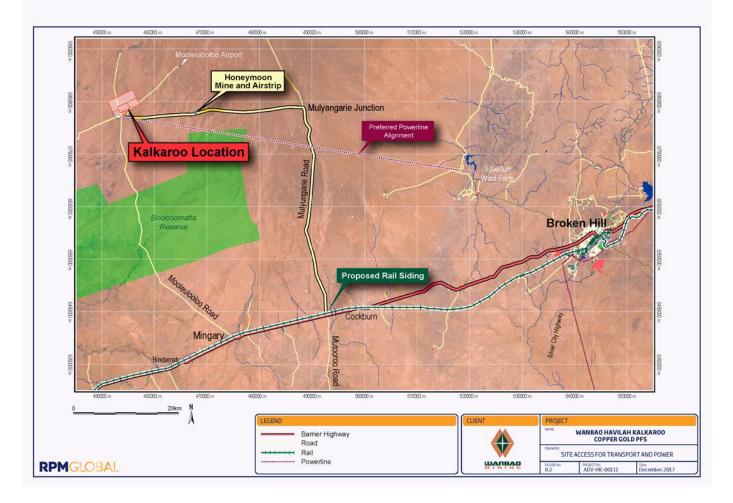

It is important to note that the Ore Reserve estimate above does not take into account cobalt at this stage, in part because the cobalt resource for the Kalkaroo deposit was released after the cut-off date for inclusion in the first phase of the PFS study. Further studies by Havilah, currently in progress, aim to quantify the positive impact inclusion of the cobalt resource will have on the Kalkaroo project economics.

An outstanding attribute of Kalkaroo is the **high potential for discovery of additional resources**, given that the Kalkaroo deposit is not closed off on any drill section either along strike or down dip. Three separate nearby prospects, each with well mineralised drill intercepts, can also potentially add appreciable ore feed, if converted to resources by further drilling. Havilah's geological models show that Kalkaroo forms part of very substantial replacement copper-cobalt-gold mineralized system whose full extent has yet to be determined.

Kalkaroo places Havilah in the fortunate position of having one of the few large undeveloped open pit copper deposits located in a politically stable jurisdiction and favourable logistical setting. This is at a time of unprecedented projected future demand for copper and cobalt to satisfy the rapidly expanding electric vehicle and renewable energy industries.










#### 2. Supporting Information for the Ore Reserve Estimate Required Under Listing Rule 5.9

The Ore Reserve is based on the updated Mineral Resource estimated by RPMGlobal (refer ASX announcement of 30 January 2018), which confirmed Havilah's earlier Mineral Resource estimate (refer ASX announcement of 29 March 2017). Sections 1, 2 and 3 from Table 1 of the JORC Code that accompanied the 30 January 2018 announcement are presented here for completeness, noting that there have been no material changes to the assumptions and technical parameters underpinning the information in these three sections. The Ore Reserve estimate considers mining, metallurgical, social, environmental and financial aspects of the project. Measured Resources largely convert to Proved Ore Reserves and Indicated Resources to Probable Ore Reserves. The Ore Reserve classifications reflect the Competent Person's view of the deposit. A notable feature is the high (75%) conversion rate of Resources to Reserves that reflects the positive economic potential of the Kalkaroo deposit.

The mining method proposed in the PFS is conventional open cut mining with bulk movement of mined material. The major fleet requirements were assumed to be up to two 350 tonne excavators primarily for waste stripping and a single 250 tonne excavator in backhoe configuration dedicated to ore mining.



**Figure 1** The Kalkaroo project lies in northeastern South Australia approximately 90 kilometres west-northwest of the regional mining centre of Broken Hill. It is located in an area of favourable logistics, with access to roads, rail and power.



The economic pit limits were defined using GEOVIA Whittle 4X software with the input data based on the outcomes of earlier Havilah studies. The analysis was completed only on Measured and Indicated Resources. The block size in the geological model is 10 m by 10 m by 10 m. To achieve the required selectivity for ore, RPMGlobal suggests a selective (or smallest) mining unit (**SMU**) of 5 m (bench height) by 10 m by 10 m. As the current model block size is larger than the target SMU, no modifying factors were applied. A detailed pit design (**Figure 4**) was completed using the Whittle Revenue Factor 90% pit as a guide. That is, the ultimate pit shell is based on 90% of the base case metal prices.

As the Project is polymetallic, with multiple ore processing routes, RPMGlobal used a net processing return (**NPR**) cutoff to define what constituted ore. This involved estimating a net value for each block, taking into account revenue and project operating costs. A positive value indicated a profitable block, which was assigned as ore.

RPMGlobal notes that as 90% of the Ore Reserves are of Proved status, there is sufficient confidence in the Resources and Reserves for them to be utilised for detailed feasibility planning with further exploration drilling unlikely to be required within the currently defined pit limits.

The approach to ore processing has been designed to meet the requirements of the four ore types, namely: saprolite, native copper, chalcocite and chalcopyrite. Metallurgical testwork supports the blending of saprolite and native copper for treatment in the oxide plant and blending the chalcocite and chalcopyrite for processing in the sulphide plant. The current approach provides for the flexibility of some chalcocite to be treated in the oxide plant. Both plants utilise conventional front end crushing and grinding circuits, incorporating gravity gold recovery methods and flotation to produce final saleable copper-gold concentrates.

The metallurgical recovery for copper and gold metal varies depending on the head grade and processing method, current estimates being:

- Saprolite Ore: Copper 47% and gold 49%.
- Native Copper: Copper 83% and gold 67%.
- Chalcocite Oxide Plant: Copper 76% and gold 53%.
- Chalcocite Sulphide Plant: Copper 78% and gold 53%.
- Chalcopyrite: Copper 92% and gold 90%.

The metal price applied for estimating the NPR and the project economic analysis was US\$6,380 per tonne for copper and US\$1,200 per ounce for gold, and an exchange rate of US\$/AU\$ of 0.75 (based on the latest Consensus Economics long term metal forecasts). The operating and capital cost estimates are at PFS levels of ±25% with up to 20% contingency factor for capital costs and 10% contingency for operating costs. The capital costs and operating costs are drawn from a range of sources including vendor quotes and RPMGlobal's extensive database and wide experience. The derivation of major operating costs is largely estimated from first principles. In addition to the above, other key assumptions used in calculating the ore block values, project economics and hence reporting of the Ore Reserves are summarized in the JORC Section 4 table below.



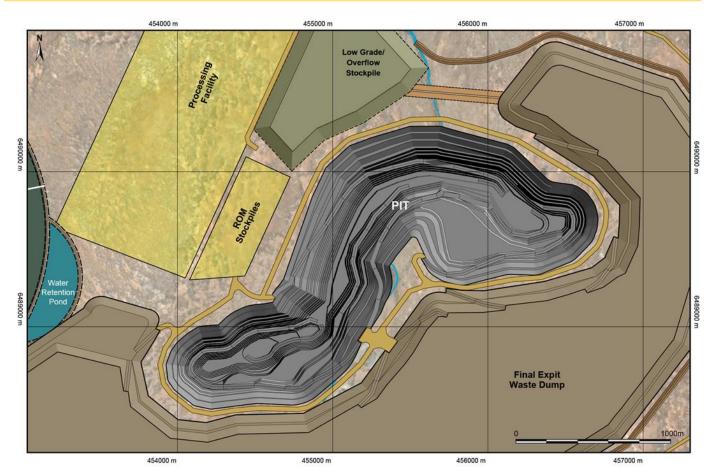



Figure 2 Kalkaroo ultimate open pit design.

#### 3. Future Value-Adding Work Planned for Kalkaroo

Havilah is presently working on a revised PFS scope with RPMGlobal to ensure that the final PFS captures the full value of the Kalkaroo project.

The additional work is focused on two key aspects that have the potential to substantially enhance the Kalkaroo project economics, namely:

- **1. Incorporation of cobalt resources and pyrite tails into the economic model:** This involves recovering a clean cobaltian pyrite concentrate from the copper flotation tails and then recovering the cobalt plus associated copper and gold from the pyrite. This represents a potentially valuable resource that has not been considered in PFS studies to date.
- **2. Improving metal recoveries:** This particularly relates to gold, by further investigating some modifications to the current processing flow sheet.

Both outcomes will have the important flow-through benefit of allowing some of the substantial (more than 110 million tonnes) deeper copper sulphide Inferred Resources at Kalkaroo, that were not considered in the PFS study, to be incorporated into the mining model. This would potentially mean a significantly larger open pit and a material increase in mine life and total projected revenue.

Wanbao Mining, the sponsor of the preliminary PFS work, has the exclusive right until 30 June 2018 to negotiate an agreement with Havilah to secure its future participation in development of the Kalkaroo project. After that date the exclusivity arrangement expires and Havilah will be in a position to consider other potential investment opportunities, with an updated PFS in hand.



**Commenting on the Kalkaroo Ore Reserve, CEO, Mr Walter Richards said**: "Kalkaroo's Ore Reserve clearly indicates the significant value of this copper-cobalt-gold project.

"The large Ore Reserve estimate highlights Kalkaroo as a standout amongst the very few open pit copper development opportunities presently available in Australia.

"Kalkaroo is a robust copper-cobalt-gold project, with a value multiple many times higher than Havilah's current market capitalisation.

"The additional PFS work being undertaken by Havilah is focused on the potential value adding opportunities related to the inclusion of cobalt and improving some of the metal recoveries," he said.

For further information visit <u>www.havilah-resources.com.au</u> **Contact:** Mr Walter Richards, CEO, on (08) 8155-4500 or email: <u>info@havilah-resources.com.au</u>

#### **Competent Person's Statement Re Kalkaroo Ore Reserves**

The information in this report which relates to the Ore Reserves of the Kalkaroo Copper Gold Project, is based on information compiled and reviewed by Mr Igor Bojanic, who is a Fellow of the Australasian Institute of Mining and Metallurgy, and is a full-time employee of RPM Advisory Services Pty Ltd. Mr Igor Bojanic has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which, he has undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for the Reporting of Mineral Resources and Ore Reserves. Mr Igor Bojanic consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The estimates of Ore Reserves presented in this Statement have been carried out in accordance with the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (December, 2012).

Igor Bojanic (B.Eng.(Mining, Hons), FAusIMM

| ASX  |                     |        |              |             |
|------|---------------------|--------|--------------|-------------|
| Code | Company             |        | Metal Prices | 5           |
| AIS  | Aeris Resources     | Metal  | <u>Unit</u>  | <u>AU\$</u> |
| AVB  | Avanco Resources    | Copper | tonne        | 8,913       |
| CDU  | CuDeco              | Gold   | ounce        | 1,688       |
| HAV  | Havilah Resources   |        |              |             |
| НСН  | Hot Chili           |        |              |             |
| HGO  | Hillgrove Resources |        |              |             |
| IAU  | Intrepid Mines      |        |              |             |
| OZL  | OZ Minerals         |        |              |             |
| RXM  | Rex Minerals        |        |              |             |
| TGS  | Tiger Resources     |        |              |             |

#### **Table 2 Graph References and Assumptions**



The table below is a description of the assessment and reporting criteria for the Kalkaroo Main copper-gold resource and the Gold Cap gold resource at Kalkaroo, in accordance with Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves. Sections 1,2 and 3 have been presented in the previous Kalkaroo resource statement (refer ASX announcement of 30 January 2018). Only Section 4 relates specifically to the Ore Reserve estimate by RPMGlobal, as described in this announcement.

#### Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The drilling database includes 411 Havilah drillholes (totalling 68,550 metres) of which there are 25,209 metres of drill core and 43,341 metres of reverse circulation (RC) and aircore (AC). The AC informs only a small portion of the Resource.</li> <li>47 earlier non-Havilah drillholes completed by major mining companies, namely Placer Dome, Newcrest and MIM totalling approximately 10,718 m were also used in the resource estimation.</li> <li>RC and AC assay samples averaging 2-3kg were riffle split as 1-2m intervals.</li> <li>Drill-core samples were mostly collected as half core over 1m intervals, unless the geological boundaries dictated otherwise.</li> <li>All Havilah samples were collected into prenumbered calico bags and packed into polyweave bags by Havilah staff for shipment (usually by Havilah staff) to the assay lab in Adelaide.</li> </ul> |
| Drilling<br>techniques   | • Drill type (eg core, reverse circulation, open-hole<br>hammer, rotary air blast, auger, Bangka, sonic, etc)<br>and details (eg core diameter, triple or standard<br>tube, depth of diamond tails, face-sampling bit or<br>other type, whether core is oriented and if so, by<br>what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>All RC holes were drilled using standard face-sampling bits, with bit sizes ranging from 120mm to 136mm. All samples were collected via riffle splitting directly from the cyclone.</li> <li>All AC holes used a 121mm blade bit</li> <li>Diamond core sizes ranged from NQ (50mm) to PQ3 (83mm). Triple tube methods were used where required to maximize core recoveries.</li> <li>Drill core was routinely orientated where ground conditions allowed, mainly using the spear technique.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Overall, RC sample recoveries and diamond drill core recoveries were considered to be quite acceptable for interpretation and modelling purposes.</li> <li>Core recovery for Havilah diamond drillholes was measured directly and averaged 93 %.</li> <li>The sample yield and wetness of the RC and AC samples was routinely recorded in drill logs. Very few samples were too wet to split. No evidence of RC sample bias due to preferential concentration of fine or coarse material was observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                                                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging<br>Logging<br>Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Sample recoveries were continuously monitored by the geologist on site and adjustments to drilling methodology were made to optimize sample recovery and quality where necessary.</li> <li>All RC and AC samples and drillcore was logged by experienced geologists directly into a digital logging system with data uploaded directly into an XL spreadsheet and transferred to a laptop computer.</li> <li>All drillcore and RC chip sample trays have been photographed.</li> <li>All drillcore and RC chip sample trays and some back-up samples are stored on site at Kalkaroo. All RC and AC samples were logged in detail by experienced geologists directly into a digital logging system with data uploaded.</li> <li>Logging is semi-quantitative and 100% of reported intersections have been logged.</li> <li>Logging is of a sufficiently high standard to support any subsequent interpretations, resource estimations and mining and metallurgical studies.</li> <li>RC or AC drill chips were received directly from the drilling rig via a cyclone and were riffle split as 1-2m intervals to obtain 2-3kg samples.</li> <li>Half core samples were collected at 1m intervals, unless otherwise dictated by the geology.</li> <li>Sampling size is considered to be appropriate for the style of mineralisation observed. Assay repeatability for gold and other metals has not proven to be an issue.</li> <li>All Havilah samples were collected in numbered calico bags that were sent to ALS assay lab in Adelaide.</li> <li>At ALS assay lab the samples are crushed in a jaw crusher to a nominal 6mm (method CRU-21) from which a 3 kg split is obtained using a riffle splitter. The split is pulverized in an LMS to 85% passing 75 microns (method PUL-23). These pulps are stored in paper bags.</li> <li>All samples are then analysed for a 33 element package using ALS's ME-ICP61 suite, whereby samples undergo a 4 acid digest and analysis by Samples undergo a 4 acid digest and analysis by samples undergo a 4 acid digest and</li></ul> |
| Quality of<br>assay data and<br>laboratory<br>tests                           | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Au).</li> <li>A range of elements were analysed by a range of slightly different techniques by the four companies, all of which are considered acceptable.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                    | <ul> <li>JORC Code explanation instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. </li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> <li>The verification of significant intersections by either</li> </ul> | <ul> <li>Commentary         <ul> <li>Havilah samples were also subjected to the following additional check assaying to provide more reliable results where coarser grained native copper and to a lesser extent, gold, was present.</li> <li>Screen copper analyses were routinely carried out for samples where native copper had been identified during geological logging.</li> <li>Screen fire gold analyses were routinely carried out where the initial gold assays were in excess of 0.5ppm.</li> <li>Assay data accuracy and precision was continuously checked through submission of field and laboratory standards, blanks and repeats which were inserted at a nominal rate of approximately 1 per 20 drill samples.</li> <li>Assay data for laboratory standards and repeats were statistically analysed and any samples that lay outside of a two standard deviation benchmark were re-assayed.</li> <li>Ten pairs of twinned RC/DD holes were</li> </ul> </li> </ul>                                                                                                                   |
| Verification of<br>sampling and<br>assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                   | <ul> <li>Ten pairs of twinned RC/DD holes were analysed with comparisons made for the relative intersection widths, hole size, volume differences, metre x %Cu and metre x gm Au, RC sample size and quality and any possible contamination issues. It was found that although there were wide variations in total copper metal and gold metal calculations between twinned holes, the overall average RC and drillcore metal calculations produced similar results (within 8% for copper and within 6% for gold). There was no observed bias between the drill methods and no significant differences in intersection widths.</li> <li>Rigorous internal QC procedures are followed to check all assay results (see section 3)</li> <li>All data entry is under control of the responsible geologist, who is responsible for data management, storage and security.</li> <li>RPM completed independent re-assay of field duplicates. The analysis demonstrated acceptable results but with greater variability for the coarse native copper and gold in the smaller pulp sample repeats.</li> </ul> |
| Location of<br>data points                  | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches,<br/>mine workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                               | <ul> <li>Diamond drillholes were surveyed at approximately 30m downhole intervals using an Eastman single or multi-shot down-hole camera or a digital camera.</li> <li>Earlier Havilah RC holes were not surveyed and were assumed not to have deviated significantly from their collar azimuth and inclination. Later RC holes were surveyed in the rods with only dip measurements recorded. The last RC program used non-magnetic drill rods to allow dip and azimuth readings to be collected with only minor (±1°) deviations noted.</li> <li>Drillhole collar coordinates are surveyed in UTM</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | coordinates using a differential GPS system with<br>an x:y:z accuracy of 20cm:20cm:40cm and are<br>quoted in ADG 66 datum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Havilah drilling was completed on nominal 25m sections perpendicular to the strike of the primary copper-gold mineralisation at Kalkaroo West and on nominal 100m sections perpendicular to the strike of the Kalkaroo Main Dome mineralisation. Holes were drilled towards the south at -60 to -75°.</li> <li>Earlier non-Havilah holes were drilled at various oblique angles and directions including to the north.</li> <li>The intersection angle is between 60 and 90 degrees through the Kalkaroo Main Dome style mineralisation and between 20 and 45 degrees through the more steeply dipping Kalkaroo West vein style mineralisation. The deposit is largely untested deeper than 250m below surface.</li> <li>Sample compositing was not used.</li> </ul> |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The drillhole azimuth and dip was chosen to intersect the mineralized zones as nearly as possible to right angles and at the desired positions to maximize the value of the drilling data.</li> <li>At this stage, no material sampling bias is known to have been introduced by the drilling direction.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>RC and AC chip samples are directly collected from the riffle splitter in numbered calico bags.</li> <li>Several calico bags are placed in each polyweave bag which are then sealed with cable ties. The samples are transported to the assay lab by Havilah personnel at the end of each field stint.</li> <li>There is minimal opportunity for systematic tampering with the samples as they are not out of the control of Havilah until they are delivered to the assay lab.</li> <li>This is considered to be a secure and reasonable procedure and no known instances of tampering with samples occurred during the drilling programs</li> </ul>                                                                                                                |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | <ul> <li>Ongoing internal auditing of sampling techniques and assay data has not revealed any material issues.</li> <li>Robert Dennis visited the site in November 2016 and found field procedures to be adequate.</li> <li>RPM completed independent re-sampling and assaying and found results to be adequate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## Section 2 Reporting of Exploration Results

| Criteria     | JC | RC Coo | de explanat   | tion             |              |       | Со | mmentary                                       |
|--------------|----|--------|---------------|------------------|--------------|-------|----|------------------------------------------------|
| Mineral      | ٠  | Туре,  | reference     | name/number,     | location     | and   | ٠  | Security of tenure is via current mining lease |
| tenement and |    | owner  | ship includii | ng agreements or | · material i | ssues |    | applications and an underlying exploration     |



| Criteria              | JORC Code explanation                                           | Commentary                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| land tenure           | with third parties such as joint ventures,                      | licence (EL5800) owned 100% by Havilah.                                                                                                                                                                                                                                                                                                       |
| status                | partnerships, overriding royalties, native title                |                                                                                                                                                                                                                                                                                                                                               |
|                       | interests, historical sites, wilderness or national             |                                                                                                                                                                                                                                                                                                                                               |
|                       | park and environmental settings.                                |                                                                                                                                                                                                                                                                                                                                               |
|                       | • The security of the tenure held at the time of                |                                                                                                                                                                                                                                                                                                                                               |
|                       | reporting along with any known impediments to                   |                                                                                                                                                                                                                                                                                                                                               |
|                       | obtaining a license to operate in the area.                     |                                                                                                                                                                                                                                                                                                                                               |
| Exploration           | Acknowledgment and appraisal of exploration by                  | • Kalkaroo was explored by a number of major                                                                                                                                                                                                                                                                                                  |
| done by other parties | other parties.                                                  | mining groups in the past including Placer,<br>Newcrest Mining and MIM Exploration, who<br>completed more than 45,000 metres of drilling                                                                                                                                                                                                      |
|                       |                                                                 | <ul><li>in the region.</li><li>All previous exploration data has been</li></ul>                                                                                                                                                                                                                                                               |
|                       |                                                                 | integrated into Havilah's databases.                                                                                                                                                                                                                                                                                                          |
| Geology               | • Deposit type, geological setting and style of mineralisation. | <ul> <li>Kalkaroo consists of stratabound replacement<br/>and vein style copper-gold mineralisation<br/>within Willyama Supergroup rocks of the<br/>Curnamona Craton</li> <li>The stratabound mineralization is uniformly<br/>distributed along more than 3 km of strike that<br/>follows on any one provide the 25 degree diaging</li> </ul> |
|                       |                                                                 | follows an arc around the 35 degree dipping<br>northern nose of the Kalkaroo south dome. It is<br>hosted by an 80m -120m thick mineralised<br>horizon that is sandwiched between psammitic<br>footwall rocks and a thick pelitic hangingwall<br>sequence.                                                                                     |
|                       |                                                                 | • In part, the mineralization is associated with near-vertical, mineralised quartz vein breccia fracture/fault fillings, which probably formed                                                                                                                                                                                                |
|                       |                                                                 | channel ways for the mineralising fluids.<br>Interference folding resulted in dome structures<br>which probably acted as structural traps for the<br>rising mineralising fluids carried by these<br>vertical structures.                                                                                                                      |
|                       |                                                                 | • The mineralising events were associated with<br>iron-rich and sodium-rich alteration fronts,                                                                                                                                                                                                                                                |
|                       |                                                                 | which are manifest as widespread fine-grained<br>magnetite in the lower sandy formations and as                                                                                                                                                                                                                                               |
|                       |                                                                 | <ul> <li>pervasive albite alteration.</li> <li>Erosion in the Mesozoic and Tertiary period</li> </ul>                                                                                                                                                                                                                                         |
|                       |                                                                 | exposed the Kalkaroo deposit to prolonged and deep weathering. Consequently, the deposit                                                                                                                                                                                                                                                      |
|                       |                                                                 | shows typical supergene enrichment features in<br>its upper part, caused by oxidation of the<br>primary sulphides in the weathering zone,                                                                                                                                                                                                     |
|                       |                                                                 | forming a soft clay rich rock called saprolite. This<br>is manifest in a sub-horizontal stratification of                                                                                                                                                                                                                                     |
|                       |                                                                 | the ore minerals from top to bottom;<br>1. Supergene free gold in saprolite, with                                                                                                                                                                                                                                                             |
|                       |                                                                 | generally minor copper, recoverable by gravity and cyanide leaching methods.                                                                                                                                                                                                                                                                  |
|                       |                                                                 | <ol> <li>Native copper and gold in saprolite, largely<br/>recoverable by gravity methods.</li> <li>Chalcocite dominant with gold,</li> </ol>                                                                                                                                                                                                  |
|                       |                                                                 | recoverable by conventional flotation.<br>4. Chalcopyrite dominant with gold and                                                                                                                                                                                                                                                              |
|                       |                                                                 | locally rich molybdenum, recoverable by<br>conventional flotation.                                                                                                                                                                                                                                                                            |



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>information                                                       | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>A total of 493 Havilah drillholes totalling approximately 82,434 metres were used in the resource estimation of which there are 25,209 metres of drill core and 57,225 metres of reverse circulation (RC) and aircore (AC).</li> <li>65 earlier non-Havilah drillholes totalling approximately 15,047 metre were also used in the resource estimation.</li> <li>This includes three generations of pre-Havilah drillholes, completed by major mining companies, namely Placer Dome, Newcrest and MIM.</li> <li>There is good correlation of the geology and assay data between these earlier drillholes and Havilah drillholes.</li> </ul> |
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                    | Exploration drilling results are not being reported<br>for the Mineral Resource area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                | <ul> <li>Down-hole lengths are reported. Drillholes are always oriented with the objective of intersecting mineralisation as near as possible to right angles, and hence down-hole intersections in general are as near as possible to true width.</li> <li>For the purposes of the geological interpretations and resource calculations the true widths are always used.</li> </ul>                                                                                                                                                                                                                                                                |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Exploration drilling results are not being<br/>reported for the Mineral Resource area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Balanced<br>Reporting                                                           | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches,<br/>mine workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting<br/>of both low and high grades and/or widths should<br/>be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                     | Exploration drilling results are not being reported for the Mineral Resource area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other<br>substantive<br>exploration<br>data                                     | • Other exploration data, if meaningful and material,<br>should be reported including (but not limited to):<br>geological observations; geophysical survey results;<br>geochemical survey results; bulk samples - size and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Exploration drilling results are not being reported for the Mineral Resource area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Criteria     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | method of treatment; metallurgical test results; bulk<br>density, groundwater, geotechnical and rock<br>characteristics; potential deleterious or<br>contaminating substances.                                                                                                                                                                                         |                                                                                                                                                                                                                                                             |
| Further work | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul> | <ul> <li>Additional infill drilling may be carried out in the<br/>future to upgrade Inferred and Indicated<br/>Resources to Measured Resources and also to<br/>explore strike and depth extensions outside of<br/>the current resource envelope.</li> </ul> |

#### Section 3 Estimation and Reporting of Mineral Resources

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul> | <ul> <li>All drill data is directly logged into a field based digital logging system and then uploaded to an Access database by the responsible geologist, who also carries out verification and data checking at the time.</li> <li>Laboratory assay data is received digitally and uploaded to the database electronically with relevant QC checks.</li> <li>All data in the database is validated for consistency and accuracy. Various powerful QC checks for overlapping data, missing assays and other errors are performed at the time the data is transferred into the Vulcan 3D database for the resource modelling work. Errors identified are immediately fixed and cross-checked to ensure there are no systemic errors.</li> <li>All original assay data sheets, logging files, drill chips and half or quarter core are retained for validation purposes.</li> <li>Standard deviation plots of all data (e.g. assays, densities, recoveries, sample quality) were used to identify outliers for subsequent investigation for errors.</li> <li>Drillhole collar locations were checked for consistency on cross sections.</li> <li>Drillhole plots were examined to ensure consistency of surveys.</li> <li>Examination of the database has not revealed any systemic issues of concern that could significantly affect the current resource estimation.</li> </ul> |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by the<br/>Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why<br/>this is the case.</li> </ul>                                                     | <ul> <li>A site visit was conducted by Robert Dennis of<br/>RPM during November 2016. Robert inspected<br/>the deposit area, drill core, the core logging and<br/>sampling facility. During this time, notes and<br/>photos were taken. Discussions were held with<br/>site personnel regarding drilling and sampling<br/>procedures. No major issues were encountered.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Geological<br>interpretation | • Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.                                                                                                                                                     | There is a high level of confidence in the geological interpretation of the Kalkaroo deposit, in large part because of the detailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Criteria | JORC Code explanation                                   | Commentary                                                   |
|----------|---------------------------------------------------------|--------------------------------------------------------------|
|          |                                                         | logging undertaken and the experience of the                 |
|          | • Nature of the data used and of any assumptions        | geologists involved. This has allowed a                      |
|          | made.                                                   | consistent picture of the stratigraphic and                  |
|          |                                                         | structural controls on alteration and                        |
|          | • The effect, if any, of alternative interpretations on | mineralisation to be developed for the entire                |
|          | Mineral Resource estimation.                            | deposit that accords with a comprehensive                    |
|          |                                                         | regional geological understanding, as described              |
|          | • The use of geology in guiding and controlling         | in Section 2.                                                |
|          | Mineral Resource estimation.                            | • It is important to note that the Kalkaroo                  |
|          | Mineral Resource estimation.                            | mineralisation does not outcrop, so virtually all            |
|          | • The factors affecting continuity both of grade and    | geological information about the deposit is                  |
|          | <i>geology.</i>                                         | either gained from drilling data or geophysics.              |
|          | geology.                                                | • The main component of the copper-gold                      |
|          |                                                         | mineralisation is replacement style hosted in a              |
|          |                                                         | favourable stratigraphic horizon which has been              |
|          |                                                         | displaced and enriched in places with later                  |
|          |                                                         | faulting and vein emplacement.                               |
|          |                                                         | <ul> <li>Superimposed on the primary chalcopyrite</li> </ul> |
|          |                                                         | copper mineralisation is deep weathering that                |
|          |                                                         | has produced a vertical zonation in the                      |
|          |                                                         | mineralogy, from gold only in a secondary                    |
|          |                                                         | weathering cap, through native copper and                    |
|          |                                                         | chalcocite                                                   |
|          |                                                         | • The Dome is transected by a major E-W                      |
|          |                                                         | trending, sub-vertical, quartz-carbonate vein                |
|          |                                                         | breccia system. A later shear offsets the                    |
|          |                                                         | mineralisation and vein/breccia system by 200m               |
|          |                                                         | to the north along the western limb of the                   |
|          |                                                         | Dome.                                                        |
|          |                                                         | • In general the stratigraphy and mineralisation of          |
|          |                                                         | the Kalkaroo deposit is remarkably uniform over              |
|          |                                                         | the entire strike length of the Main Dome.                   |
|          |                                                         | • Greater complexity occurs at the western                   |
|          |                                                         | (Kalkaroo West) and eastern ends of the                      |
|          |                                                         | deposit, where considerable disruption occurs                |
|          |                                                         | due to faulting, and this has required                       |
|          |                                                         | adjustments to the search ellipsoid orientations             |
|          |                                                         | to avoid biasing errors.                                     |
|          |                                                         | • The geology is a major control in guiding the              |
|          |                                                         | resource estimation. Firstly, in guiding the                 |
|          |                                                         | search ellipsoid orientations and secondly, in               |
|          |                                                         | outlining different ore types and domains within             |
|          |                                                         | the overall deposit.                                         |
|          |                                                         | Mineralised envelopes for copper                             |
|          |                                                         | mineralisation were interpreted on drill section             |
|          |                                                         | using geological logs, copper grades ≥0.2%                   |
|          |                                                         | copper.                                                      |
|          |                                                         | • Mineralised envelopes for gold mineralisation              |
|          |                                                         | were interpreted on drill section using                      |
|          |                                                         | geological logs, gold grades ≥0.2ppm.                        |
|          |                                                         | Along strike mineralisation outlines were                    |
|          |                                                         | generally terminated at half the drill hole                  |
|          |                                                         | spacing beyond the last known section of                     |
|          |                                                         | mineralisation.                                              |
|          |                                                         | Down dip mineralisation extrapolation is                     |
|          |                                                         | generally less than 100m below the deepest                   |
|          |                                                         | sectional intercepts, unless strike geological               |
|          |                                                         | continuity is being interpreted across undrilled             |



| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions                                | The extent and variability of the Mineral Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>sections from one deeply drilled section to another.</li> <li>The interpreted geological domains are used to control the resource estimation process.</li> <li>Alternative interpretations will likely result in similar tonnage and grades for the Kalkaroo deposit due to the significant width and strike extent of the deposit.</li> <li>The Kalkaroo mineralisation exists around an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | expressed as length (along strike or otherwise),<br>plan width, and depth below surface to the upper<br>and lower limits of the Mineral Resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>arcuate domal structure which has been drilled more than 3km along strike. Copper-gold mineralisation is continuous throughout this strike length and is open at depth along its entire length and is open at both ends.</li> <li>The true width of mineralisation ranges from 40-80 metres thick, while the plan width of mineralisation above cutoff varies from 50 to 200 metres.</li> <li>Mineralisation generally has an upper bound 50 metres below the topography and at its deepest has been intersected in a single drillhole 500 metres below the topographic surface.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Estimation and<br>modelling<br>techniques | <ul> <li>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</li> <li>The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</li> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> <li>Discussion of basis for using or not using grade cutting or capping.</li> <li>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</li> </ul> | <ul> <li>Polygons and hence triangulations are based on interpretations completed on nominal 25m sections for Kalkaroo West and nominal 50-100m sections for Kalkaroo Main Dome. Sectional interpretations are made perpendicular to the strike.</li> <li>Triangulated interpretations have been generated for the following lithological domains:         <ul> <li>a. Namba</li> <li>b. Eyre</li> <li>c. Saprolite (sap)</li> <li>d. Kalkaroo West (kw), subdivided into k2.2, k2.5, k2.8, k3.2 and k3.5</li> <li>e. Kalkaroo West (kw), subdivided into k2.2, kw2.5, kw2.8 and kw3.5</li> <li>f. Kalkaroo West Vein (kwest_vn)</li> <li>g. Kalkaroo West Vein (cent_vn)</li> </ul> </li> <li>Lithological logging of drill cuttings and core defined different oxidation levels with increasing depth.</li> <li>These observations have been used to divide mineralisation into discrete oxidation domains. From top down these are: saprolite, native copper, chalcocite and chalcopyrite.</li> <li>Statistical analysis was completed for each domain to ascertain the distribution of grades and examine whether any extreme values/outliers existed. Extreme values were investigated and were found to be minimal in number and not deemed to have a material impact on estimated grades. Variogram modelling was completed for each element in each domain.</li> <li>The block model was constructed in Vulcan 10.0 software with parent blocks of 10mE by 10mN</li> </ul> |



| Critoria | IOBC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citterid |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Criteria | JORC Code explanation | <ul> <li>by 10mRL.</li> <li>Compositing used 1m downhole sample lengths with length weighted assay composites used during estimation to account for small composite intervals at domain boundaries.</li> <li>Estimation was performed using ordinary kriging and inverse distance techniques.</li> <li>Estimation passes for the Kalkaroo deposit were generally as follows: First pass search was 50 metres. If interpolation did not fill all blocks on the first pass, then the search ellipsoid was increased to 100m. If interpolation did not fill all blocks on the second pass, then the search ellipsoid was increased to 200m. Domains estimated using unfolding had a search perpendicular to dip and strike of mineralisation set to a ratio of 0.2 of the domain width.</li> <li>Cu, Au and specific gravity were estimated separately for each combination of lithology and oxidation domains. Estimation domain boundaries relate to mineralised boundaries.</li> <li>Up to three estimation passes with increasing search neighbourhood size was used.</li> <li>Search ellipsoid orientation was controlled using stratigraphic surfaces during estimation with unfolding methods.</li> <li>An octant based search was used for sample selection during grade estimation.</li> <li>A minimum of 4 and maximum of 32 composites were used per block estimate.</li> <li>Estimates and calculations were validated visually in Vulcan software to ensure blocks contained all required variables, default codes were correctly applied to blocks and that all domain and oxidation codes were represented. The domain variables were correctly assigned according to priority order within defined</li> </ul> |
|          |                       | <ul> <li>composites were used per block estimate.</li> <li>Estimates and calculations were validated visually in Vulcan software to ensure blocks contained all required variables, default codes were correctly applied to blocks and that all domain and oxidation codes were represented. The domain variables were correctly assigned according to priority order within defined triangulations, examination of code allocation within overlapping areas to ensure proper</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                       | <ul> <li>priority order application, inspection for evidence of blocks leaking from a domain due to triangulation errors such as openings, crossing or inconsistency and comparison of domain wireframe volumes to block model domain volumes to ensure block parent and sub-block size is appropriate.</li> <li>Statistical comparisons of raw sample data versus de-clustered data versus block model data were completed. Drift plots were generated on 200 metre section spacing to check block estimation versus original drill sample grade.</li> <li>The Kalkaroo resource estimate as at March</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                       | 2017 was compared to the previous resource<br>estimate from March 2012. Variances identified<br>were primarily due to additional infill drilling<br>providing clarification of previous measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and indicated resources and down dip drilling<br>which allowed reporting of inferred resource<br>classification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Moisture                                   | • Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.                                                                                                                                                                                                                                                                                                                                                                                                                                                | • Tonnes have been estimated on a dry basis through the determination of dry specific gravity using the Archimedes principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cut-off<br>parameters                      | The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Gold Cap resource has been calculated using a 0.2g/t gold lower cut-off grade.</li> <li>For the Kalkaroo main copper-gold resource a 0.4% copper equivalent lower cut-off grade was applied. Mineral resources have been reported using a copper equivalent grade calculated using a six month average World Bank copper and gold price from 1st July 2016 to 31st December 2016 with gold set at US\$1,287/oz (A\$1727/oz at AUD = 0.74USD) and a copper price of US\$5,030/tonne (A\$ 6,797 / tonne at AUD = 0.74 USD) and assuming comparable recoveries for both metals. On this basis, 1 ppm Au = 8169 ppm Cu using a conversion factor of 32151 troy ounces per metric tonne.</li> <li>Copper equivalent grades in the saprolite mineralisation have been set to zero.</li> <li>Cut-off factors include considerations developed in the PFS study.</li> </ul> |
| Mining factors<br>or assumptions           | • Assumptions made regarding possible mining<br>methods, minimum mining dimensions and<br>internal (or, if applicable, external) mining dilution.<br>It is always necessary as part of the process of<br>determining reasonable prospects for eventual<br>economic extraction to consider potential mining<br>methods, but the assumptions made regarding<br>mining methods and parameters when estimating<br>Mineral Resources may not always be rigorous.<br>Where this is the case, this should be reported with<br>an explanation of the basis of the mining<br>assumptions made. | <ul> <li>The Kalkaroo resources are expected to be mined as a conventional open pit mining operation using excavators and large trucks.</li> <li>The broad nature of the mineralisation lends itself to an open pit mining operation, initially as a free dig operation due to soft and weathered nature of the host material, as evidenced in the neighbouring Portia gold mine.</li> <li>No assumptions have been made about mining selectivity for specific material types or quality.</li> <li>No external mining dilution or other factors have been applied to the resource estimate.</li> <li>Previously reported prefeasibility studies indicate that there is a sound basis for determining reasonable prospects for eventual economic extraction of the Kalkaroo copper-gold mineralisation.</li> </ul>                                                            |
| Metallurgical<br>factors or<br>assumptions | • The basis for assumptions or predictions regarding<br>metallurgical amenability. It is always necessary as<br>part of the process of determining reasonable<br>prospects for eventual economic extraction to<br>consider potential metallurgical methods, but the<br>assumptions regarding metallurgical treatment<br>processes and parameters made when reporting<br>Mineral Resources may not always be rigorous.<br>Where this is the case, this should be reported with<br>an explanation of the basis of the metallurgical<br>assumptions made.                                | <ul> <li>No metallurgical assumptions have been applied<br/>to the resource model.</li> <li>Metallurgical test work to date indicates that<br/>gold and copper can be recovered satisfactorily<br/>from the four main ore types. Acceptable<br/>sulphide concentrate grades can be achieved,<br/>without any penalty element issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Environmental<br>factors or<br>assumptions | • Assumptions made regarding possible waste and<br>process residue disposal options. It is always<br>necessary as part of the process of determining<br>reasonable prospects for eventual economic                                                                                                                                                                                                                                                                                                                                                                                    | • A comprehensive (1400 page) mining lease<br>proposal document, which addresses a range of<br>environmental issues connected with the<br>proposed Kalkaroo mining operation in some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Criteria             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulk density         | <ul> <li>extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.</li> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the</li> </ul> | <ul> <li>detail has been approved by DSD following public comment.</li> <li>Mining development is subject to the approval of a Program for Environmental Protection and Rehabilitation (PEPR) by the Department for State Development.</li> <li>This study will comprehensively address all environmental and social impacts and the risk mitigation methodologies to be employed.</li> <li>A total of 11,774 core samples were measured for density.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | <ul> <li>method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul>                                                                                                                | <ul> <li>Most SG calculations were made using the weight in air vs weight in water method.</li> <li>Density of the ore material generally decreases with increasing weathering and this has been taken into account when estimating tonnages for the various ore types.</li> <li>It is assumed that the bulk density will have little variation within the separate material types across the breadth of the project area. Therefore a single value applied to each material type is considered acceptable.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
| Classification       | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                           | <ul> <li>The estimates have been classified into Measured, Indicated and Inferred Mineral Resources according to the JORC 2012 code, taking into account drilling density, geological confidence, estimation pass and confidence and continuity of the mineralisation around the likely economic cut-off grades. Classification of mineralisation with the Kalkaroo project was based on confidence of geological interpretation driven by drill density:         <ul> <li>a. Measured Mineral Resources are restricted to where drill spacing is less than 50 metres.</li> <li>b. Indicated Mineral Resources are defined where drill spacing is between 50 and 100 metres.</li> <li>c. Inferred Mineral Resources are defined where drill spacing is between 200 metres.</li> </ul> </li> <li>The Mineral Resource estimate appropriately reflects the view of the Competent Person.</li> </ul> |
| Audits or<br>reviews | • The results of any audits or reviews of Mineral<br>Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The resource estimation work was undertaken<br/>by independent resource geologist, Mr Steve<br/>Sullivan who has had more than 30 years'<br/>experience in the mining industry, the majority<br/>of which has been spent in resource estimation.</li> <li>All drilling data and relevant interpretations<br/>were supplied to Maptek by Havilah and there<br/>were extensive technical discussions during the<br/>estimation process between Havilah geologists<br/>and Maptek to ensure that all of Havilah's<br/>geological knowledge and interpretations were<br/>taken into account in generating the block</li> </ul>                                                                                                                                                                                                                                                               |



| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discussion of<br>relative<br>accuracy/<br>confidence | <ul> <li>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</li> </ul> | <ul> <li>model.</li> <li>Havilah conducted internal peer review of the resource processes and reporting outcomes numerous times throughout the resource estimation work. Several external parties have reviewed prior work at Kalkaroo and provided feedback which was incorporated into the current resource report.</li> <li>RPM audited the Resource estimate inclusive of independent swath plot review, classification checks and re-reporting of the estimate and verified the estimate.</li> <li>The relative accuracy of the Mineral Resource is reflected in the reporting of the 2012 JORC Code.</li> <li>Geological and block models have been validated visually against drilling and statistically against input data sets on a domain and swath basis.</li> <li>The Mineral Resource estimate is based on the assumption that open cut mining methods will be applied and that grade control sampling will be available for selective material delineation. As such the resource estimate should be considered to represent a global resource estimate.</li> <li>No production data is available to reconcile results.</li> </ul> |



# Section 4 Estimation and Reporting of Mineral

# Reserves

| Criteria                                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>Resource<br>estimate for<br>conversion to<br>Ore Reserves | <ul> <li>Description of the Mineral<br/>Resource estimate used as a<br/>basis for the conversion to an<br/>Ore Reserve.</li> <li>Clear statement as to whether<br/>the Mineral Resources are<br/>reported additional to, or<br/>inclusive of, the Ore Reserves.</li> </ul>                                                                                                                                                                                          | <ul> <li>The Mineral Resources have been estimated in accordance with the JORC Code (2012). The Competent Person for the Mineral Resource estimate is Mr. Robert Dennis who is a full time employee of RPM Advisory Pty Ltd and is a Member of the Australasian Institute of Geoscientists with sufficient relevant experience to qualify as a Competent Person.</li> <li>The Mineral Resources are inclusive of these Ore Reserves.</li> </ul>                                                                                              |
| Site visits                                                          | <ul> <li>Comment on any site visits<br/>undertaken by the Competent<br/>Person and the outcome of<br/>those visits.</li> <li>If no site visits have been<br/>undertaken indicate why this is<br/>the case.</li> </ul>                                                                                                                                                                                                                                               | <ul> <li>RPM attended a site visit from 9th to 12th<br/>November 2016. RPM representatives were Mr<br/>Dan Peel (Mining Engineer) and Mr Robert<br/>Dennis (Geologist). The field visit involved a<br/>meeting between Havilah and RPM in Adelaide<br/>on 9th November followed by a field visit to the<br/>Project area from 10th to 12th November 2016.</li> <li>Both Mr Dennis and Mr Peel were full time<br/>employees of RPM at the time.</li> <li>No material physical change has occurred at the<br/>site since the visit.</li> </ul> |
| Study status                                                         | <ul> <li>The type and level of study<br/>undertaken to enable Mineral<br/>Resources to be converted to<br/>Ore Reserves.</li> <li>The Code requires that a study<br/>to at least Pre-Feasibility Study<br/>level has been undertaken to<br/>convert Mineral Resources to<br/>Ore Reserves. Such studies will<br/>have been carried out and will<br/>have determined a mine plan<br/>that is technically achievable and<br/>economically viable, and that</li> </ul> | <ul> <li>A pre-feasibility study has been completed by<br/>RPM. The outcomes of the PFS form the basis<br/>for the Ore Reserve estimate</li> <li>In RPM's opinion the mine plan is technically<br/>achievable and economically viable. The mine<br/>plan aims to account for all material<br/>considerations including Modifying Factors.</li> </ul>                                                                                                                                                                                         |



| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | material Modifying Factors have been considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cut-off<br>parameters                      | • The basis of the cut-off grade(s) or quality parameters applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>A Net Processing Return ("NPR") cut-off was<br/>used to define "ore" and "waste" as traditional<br/>cut-off grade is unsuitable for a multi-element<br/>deposit with multiple rock types and processing<br/>streams. The NPR has been defined as the net<br/>margin per tonne of rock. That is, a positive NPR<br/>value indicates that if the material if processed<br/>will generate a positive economic margin and<br/>hence can be considered "ore".</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mining factors<br>or assumptions           | <ul> <li>The method and assumptions<br/>used as reported in the Pre-<br/>Feasibility or Feasibility Study to<br/>convert the Mineral Resource to<br/>an Ore Reserve (i.e. either by<br/>application of appropriate factors<br/>by optimisation or by preliminary<br/>or detailed design).</li> <li>The choice, nature and<br/>appropriateness of the selected<br/>mining method(s) and other<br/>mining parameters including<br/>associated design issues such<br/>as pre-strip, access, etc.</li> <li>The assumptions made<br/>regarding geotechnical<br/>parameters (eg pit slopes, stope<br/>sizes, etc.), grade control and<br/>pre-production drilling.</li> <li>The major assumptions made<br/>and Mineral Resource model<br/>used for pit and stope<br/>optimisation (if appropriate).</li> <li>The mining dilution factors used.</li> <li>The mining recovery factors<br/>used.</li> <li>Any minimum mining widths<br/>used.</li> <li>The manner in which Inferred<br/>Mineral Resources are utilised in<br/>mining studies and the sensitivity<br/>of the outcome to their inclusion.</li> <li>The infrastructure requirements<br/>of the selected mining methods.</li> </ul> | <ul> <li>The mining method proposed is conventional open cut mining with bulk movement of rock. The mining method has been selected based on the proximity of the mineralisation to the surface and the characteristics of the deposit.</li> <li>The geotechnical parameters are developed from a number of specialist studies completed since 2008. In 2017 MiningOne were engaged to review the geotechnical and hydrological outcomes. The design criteria was improved based on Havilah's operating experience at its Portia Mine.</li> <li>Ultimate pit limits were estimated using Whittle 4X software. Inferred Resources were excluded from the ultimate pit analysis as well as all mine planning.</li> <li>As the Resource block model has a size of 10m by 10 m by 10 m which is larger than the likely smallest mining unit, it is assumed this block accounts for ore loss and dilution.</li> <li>Based on Resource block size, mining modifying factor assumed no ore loss and no dilution.</li> <li>Minimum mining width of 25 m.</li> <li>Inferred Resources are assumed to be waste rock in this PFS.</li> <li>The conventional open cut mining method does not require any specialised infrastructure.</li> <li>The reference point at which Reserves are defined is effectively the ore ROM pad at the processing plant.</li> </ul> |
| Metallurgical<br>factors or<br>assumptions | The metallurgical process     proposed and the     appropriateness of that process     to the style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extensive metallurgical test work was     undertaken as part of the PFS. This was     combined with test work that had been     undertaken over the last decade to derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Criteria | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>Whether the metallurgical process is well-tested technology or novel in nature.</li> <li>The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.</li> <li>Any assumptions or allowances made for deleterious elements.</li> <li>The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.</li> <li>For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?</li> </ul> | <ul> <li>metallurgical recovery factors.</li> <li>The metallurgical recovery for copper and gold metal varies depending on the head grade and processing method. In general: <ul> <li>Saprolite ore: copper 47%; gold 49%.</li> <li>Native Copper: copper 83%; gold 67%.</li> <li>Chalcocite Oxide Plant: copper 76%; gold 53%.</li> <li>Chalcocite Sulphide Plant: copper 78%; gold 53%.</li> <li>Chalcocyrite: copper 92%; gold 90%</li> </ul> </li> <li>The Oxide processing plant is primarily designed to treat blended Saprolite and Native Copper ores at a nominal 4 million tonnes per anum.</li> <li>Blended oxide ores would be crushed with two stages of toothed roll crushers and scrubbed, with the oversize reporting to a ball mill in closed circuit with a hydrocyclone nest, and the overflow feeding a flotation circuit with two stages of cleaning. Within the milling circuit, gravity gold would be recovered by a Knelson concentrator while native copper would be captured through screening and upgraded by jigging. The final copper-gold flotation concentrate would thickened, and like the gravity gold and native copper concentrates, filtered. The flotation tailings would be thickened and the underflow would be discharged to Tailings Storage Facility</li> <li>The Oxide processing plant is designed to treat a blend of Chalcocite ores, additionally incorporating a jaw crusher and a SAG mill to prepare the Chalcocite ores for flotation. The flotation rougher concentrate would be reground and upgraded in three stages of cleaning.</li> <li>The Sulphide processing plant is designed to treat a blend of Chalcocite and Chalcopyrite ores at a nominal 7 million tonnes per annum and would be a conventional hard rock processing facility. It would employ a SABC comminution circuit (gyratory crusher/SAG mill/Ball mill/pebble crusher in closed circuit with a hydrocyclone nest) feeding a flotation concentrate would thickened, and like the gravity gold concentrate, filtered. The flotation rougher concentrate would be regover of gravity gold while the</li></ul> |



| Criteria       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental  | The status of studies of potential<br>environmental impacts of the<br>mining and processing<br>operation. Details of waste rock<br>characterisation and the<br>consideration of potential sites,<br>status of design options<br>considered and, where<br>applicable, the status of<br>approvals for process residue<br>storage and waste dumps<br>should be reported. | <ul> <li>Havilah has undertaken extensive environmental assessments as part of its government applications</li> <li>No fatal flaws have been identified by Havilah that would prevent the project from gaining development approval. No flora, fauna, heritage or land use issues were identified. The station is has been de-stocked and hence not in use. The area is arid and sparsely populated.</li> <li>South of the proposed mining area is the Boolcoomatta Reserve which has protected area status within the Australian National Reserve System due to the property being subject to a conservation covenant. The proposed site activities will need to be undertaken in a manner to act as a barrier for the defence of the Reserve's native species and communities to enable them to sustain themselves in the long term.</li> <li>It is understood from Havilah that the mining application approvals are imminent.</li> <li>No deleterious elements that would have a harmeful effect on the</li> </ul> |
| Infrastructure | The existence of appropriate<br>infrastructure: availability of land<br>for plant development, power,<br>water, transportation (particularly<br>for bulk commodities), labour,<br>accommodation; or the ease<br>with which the infrastructure can<br>be provided, or accessed.                                                                                        | <ul> <li>The construction of site infrastructure and connection to services is proposed commensurate with any new mining development.</li> <li>Water will be gained for site use form dewatering activities for the open pit.</li> <li>Power will be gained from a grid connection to Broken Hill.</li> <li>It is assumed labour will be primarily sourced from Broken Hill though a mining camp will be constructed on site.<br/>Access to the site will be from up-grading existing roads. The proposal also will aim to share infrastructure with the nearby Honeymoon Mine.</li> <li>Mine products will be railed to Port Pirie for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Costs                | <ul> <li>The derivation of, or<br/>assumptions made, regarding<br/>projected capital costs in the<br/>study.</li> <li>The methodology used to<br/>estimate operating costs.</li> <li>Allowances made for the content<br/>of deleterious elements.</li> <li>The derivation of assumptions<br/>made of metal or commodity<br/>price(s), for the principal<br/>minerals and co- products.</li> <li>The source of exchange rates<br/>used in the study.</li> <li>Derivation of transportation<br/>charges.</li> <li>The basis for forecasting or<br/>source of treatment and refining<br/>charges, penalties for failure to<br/>meet specification, etc.</li> <li>The allowances made for<br/>royalties payable, both<br/>Government and private.</li> </ul> | <ul> <li>Site capital and operating costs for all cost centres have been estimated largely from first principles. The level of accuracy and approach is commensurate with a pre-feasibility study.</li> <li>Transport charges are based on recent quotes for a project in South Australia and internal databases.</li> <li>Treatment and refining charges are based on outcomes form a marketing study and internal research.</li> <li>Royalties are as legislated by the South Australian government.</li> </ul> |
| Revenue<br>factors   | <ul> <li>The derivation of, or<br/>assumptions made regarding<br/>revenue factors including head<br/>grade, metal or commodity<br/>price(s) exchange rates,<br/>transportation and treatment<br/>charges, penalties, net smelter<br/>returns, etc.</li> <li>The derivation of assumptions<br/>made of metal or commodity<br/>price(s), for the principal metals,<br/>minerals and co-products.</li> </ul>                                                                                                                                                                                                                                                                                                                                                | <ul> <li>A copper of US\$6,380/t and gold price of US\$1,200/oz. was applied in the economic modelling of the Project.</li> <li>The price estimate is based on recent Consensus Economics published metal price long term forecasts (www.consensuseconomics.com)</li> <li>An exchange rate of USD/AUD 0.75 applied.</li> </ul>                                                                                                                                                                                    |
| Market<br>assessment | <ul> <li>The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.</li> <li>A customer and competitor analysis along with the identification of likely market windows for the product.</li> <li>Price and volume forecasts and the basis for these forecasts.</li> <li>For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.</li> </ul>                                                                                                                                                                                                                                                      | <ul> <li>The demand for copper and gold is considered<br/>in the metal price used.</li> <li>It was considered that copper and gold will be<br/>marketable for beyond the processing life of<br/>these Reserves.</li> <li>The commodity is not an industrial metal.</li> <li>The levels of potentially deleterious elements are<br/>sufficiently low to not trigger penalty payments</li> </ul>                                                                                                                    |
| Economic             | The inputs to the economic<br>analysis to produce the net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An economic model was prepared to estimate the technical value of the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Criteria       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <ul> <li>present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.</li> <li>NPV ranges and sensitivity to variations in the significant assumptions and inputs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>The model is in calendar years and real cash flows.</li> <li>The Net Present Value is positive for both the base case scenario and reasonable sensitivity analyses.</li> <li>On this basis the PFS considers the Project economic.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |
| Social         | The status of agreements with<br>key stakeholders and matters<br>leading to social licence to<br>operate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>It is understood that Havilah has an active community consultation program.</li> <li>Due to its isolated location there are few stakeholders, primarily pastoralists in the area.</li> <li>Havilah are not aware of any local pastoralists that are within a 15 km radius from Kalkaroo and hence any direct impact will be limited. No borewater is known to be extracted within 25 km of the site.</li> <li>A native title mining agreement (NTMA) with the Adnyamathanha and Wilyakali native title claimants has been approved by the governing boards of both the Adnyamathanha and Wilyakali people and has been signed by Havilah.</li> </ul> |
| Other          | <ul> <li>To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves:</li> <li>Any identified material naturally occurring risks.</li> <li>The status of material legal agreements and marketing arrangements.</li> <li>The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.</li> </ul> | <ul> <li>Ingress of water and geotechnical issues are addressed by site.</li> <li>RPM is not aware of any commercial, legal or marketing arrangements issues.</li> <li>Progress of government agreements and approvals are in line with a Project in a development phase.</li> <li>It is understood Havilah will aim to gain all remaining government approvals for mining in the next 12 months.</li> </ul>                                                                                                                                                                                                                                                  |
| Classification | <ul> <li>The basis for the classification of<br/>the Ore Reserves into varying<br/>confidence categories.</li> <li>Whether the result appropriately<br/>reflects the Competent Person's<br/>view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The Ore Reserve is classified as Proved and<br/>Probable in accordance with the JORC Code,<br/>corresponding to the resource classifications of<br/>Measured and Indicated.</li> <li>The deposit's geological model is well<br/>understood with a large proportion of Measured<br/>status Resources. The Ore Reserve</li> </ul>                                                                                                                                                                                                                                                                                                                      |



| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | • The proportion of Probable Ore<br>Reserves that have been<br>derived from Measured Mineral<br>Resources (if any).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>classification is considered appropriate given the nature of the deposit, the moderate grade variability, drilling density, structural complexity and mining history.</li> <li>No Measured was included in the Probable Ore Reserve</li> <li>No Inferred Mineral Resources were included in the Ore Reserve estimate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Audits or<br>reviews                                 | The results of any audits or<br>reviews of Ore Reserve<br>estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPM has completed an internal review of the<br>Ore Reserve estimate and found it to be<br>reasonable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Discussion of<br>relative<br>accuracy/<br>confidence | <ul> <li>Where appropriate a statement<br/>of the relative accuracy and<br/>confidence level in the Ore<br/>Reserve estimate using an<br/>approach or procedure deemed<br/>appropriate by the Competent<br/>Person. For example, the<br/>application of statistical or<br/>geostatistical procedures to<br/>quantify the relative accuracy of<br/>the reserve within stated<br/>confidence limits, or, if such an<br/>approach is not deemed<br/>appropriate, a qualitative<br/>discussion of the factors which<br/>could affect the relative accuracy<br/>and confidence of the estimate.</li> <li>The statement should specify<br/>whether it relates to global or<br/>local estimates, and, if local,<br/>state the relevant tonages,<br/>which should be relevant to<br/>technical and economic<br/>evaluation. Documentation<br/>should include assumptions<br/>made and the procedures used.</li> <li>Accuracy and confidence<br/>discussions of any<br/>applied Modifying Factors that<br/>may have a material impact on<br/>Ore Reserve viability, or for<br/>which there are remaining areas<br/>of uncertainty at the current<br/>study stage.</li> <li>It is recognised that this may not<br/>be possible or appropriate in all<br/>circumstances. These<br/>statements of relative accuracy<br/>and confidence of the estimate<br/>should be compared with<br/>production data, where<br/>available.</li> </ul> | <ul> <li>Mining is a relatively high risk business when compared to other industrial and commercial operations. Each deposit has unique characteristics and responses during mining and processing, which can never be wholly predicted.</li> <li>As a relatively high risk business, uncertainty always exists in regard to the outcomes. Whilst an effective management team can identify the known risks and take measures to manage and mitigate those risks, there is still the possibility for unexpected and unpredictable events to occur. It is not possible therefore to totally remove all risks or state with certainty that an event that may have a material impact on the operation of a mine, will not occur.</li> <li>The accuracy and confidence limits are based on the outcomes of a pre-feasibility study and have therefore been completed to an engineering accuracy of +/-25%.</li> <li>The Ore Reserve estimate is a global estimate for the proposed Project.</li> </ul> |